Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Environ Sci Technol ; 57(5): 1949-1958, 2023 02 07.
Article in English | MEDLINE | ID: mdl-36700533

ABSTRACT

Brominated organic compounds such as 1,2-dibromoethane (1,2-DBA) are highly toxic groundwater contaminants. Multi-element compound-specific isotope analysis bears the potential to elucidate the biodegradation pathways of 1,2-DBA in the environment, which is crucial information to assess its fate in contaminated sites. This study investigates for the first time dual C-Br isotope fractionation during in vivo biodegradation of 1,2-DBA by two anaerobic enrichment cultures containing organohalide-respiring bacteria (i.e., either Dehalococcoides or Dehalogenimonas). Different εbulkC values (-1.8 ± 0.2 and -19.2 ± 3.5‰, respectively) were obtained, whereas their respective εbulkBr values were lower and similar to each other (-1.22 ± 0.08 and -1.2 ± 0.5‰), leading to distinctly different trends (ΛC-Br = Δδ13C/Δδ81Br ≈ εbulkC/εbulkBr) in a dual C-Br isotope plot (1.4 ± 0.2 and 12 ± 4, respectively). These results suggest the occurrence of different underlying reaction mechanisms during enzymatic 1,2-DBA transformation, that is, concerted dihaloelimination and nucleophilic substitution (SN2-reaction). The strongly pathway-dependent ΛC-Br values illustrate the potential of this approach to elucidate the reaction mechanism of 1,2-DBA in the field and to select appropriate εbulkC values for quantification of biodegradation. The results of this study provide valuable information for future biodegradation studies of 1,2-DBA in contaminated sites.


Subject(s)
Dehalococcoides , Ethylene Dibromide , Carbon Isotopes/analysis , Carbon Isotopes/metabolism , Dehalococcoides/metabolism , Organic Chemicals , Biodegradation, Environmental , Chemical Fractionation
2.
Sci Total Environ ; 788: 147826, 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34134359

ABSTRACT

Isotopic fractionation of groundwater contaminants can occur due to degradation, diffusion and sorption. Of these, only degradation has been extensively explored, yet diffusive isotopic fractionation (DIF) and sorptive isotopic fractionation (SIF) can have significant effects on the isotopic enrichment of groundwater contaminants. Understanding how to mathematically describe and model these processes is vital to the correct interpretation of compound-specific isotope analysis (CSIA) data in the field. Here, models for these physical fractionation processes are developed and described, including the definition of a sorption enrichment factor. These models are then implemented numerically using inverse and finite-element methods to investigate two scenarios, diffusion-sorption and diffusion-sorption-advection, that have been measured in the laboratory. Concentration, δ37Cl, and δ2H data from cis-dichloroethene (cDCE) and trichloroethene (TCE) are used as inputs to the models. Unknown transport parameters including diffusive fractionation exponents are determined from an inverse modelling approach. DIF is shown to have a stronger influence on chlorine isotopologues than on hydrogen isotopologues. For both cDCE and TCE, the sorption enrichment factor of chlorine is found to be negative while that of hydrogen is positive. The presented approach and results provide novel tools and insight into DIF and SIF and underline that these processes should be taken into account when using CSIA to assess contaminant fate.

3.
Ground Water ; 59(5): 671-676, 2021 09.
Article in English | MEDLINE | ID: mdl-33745130

ABSTRACT

Mass balance calculations and hydrodynamics of groundwater flow suggest that the solutes in brines of the coastal sabkha aquifer from the Emirate of Abu Dhabi are derived largely from ascending geologic brines into the sabkha from the underlying formations. Solute interpretation for the ascending brine model (ABM) was based on two independent but secondary lines of evidence (solute ratios and solute fluxes). In the current study, direct primary evidence for this ABM was provided through analyses of δ81 Br, δ37 Cl, and 87 Sr/86 Sr. Different solute histories of geologic brine and sea water provide an "isotopic fingerprint" that can uniquely distinguish between the two possible sources. Samples from the coastal sabkha aquifer of Abu Dhabi were determined to have a mean δ81 Br of 1.17‰ that is statistically equal, at the 95% confidence level, to the mean of 1.11‰ observed in the underlying geologic brine and statistically different than sea water. Similarly, the δ37 Cl in sabkha brine has a mean of 0.25‰ and is statistically equal to a mean of 0.21‰ in the underlying geologic brines at the 95% confidence level and statistically different from sea water. Also, dissolved strontium isotope data are consistent with the ABM and even with the complex set of processes in the sabkha, the variance in strontium isotope results is similar to the geologic brine. These observations provide primary direct evidence consistent that the major source of these solutes (and presumably others in the aquifer) is from discharging geologic brines, not from adjacent sea water.


Subject(s)
Groundwater , Water Pollutants, Chemical , Environmental Monitoring , Salts , Water Pollutants, Chemical/analysis
4.
Article in English | MEDLINE | ID: mdl-33745748

ABSTRACT

The Publisher regrets that this article is an accidental duplication of an article that has already been published, http://dx.doi.org/10.1016/j.apgeochem.2021.104892. The duplicate article has therefore been withdrawn. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.

5.
Anal Chem ; 91(19): 12290-12297, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31454232

ABSTRACT

Increasing applications of compound-specific chlorine isotope analysis (CSIA) emphasize the need for chlorine isotope standards that bracket a wider range of isotope values in order to ensure accurate results. With one exception (USGS38), however, all international chlorine isotope reference materials (chloride and perchlorate salts) fall within the narrow range of one per mille. Furthermore, compound-specific working standards are required for chlorine CSIA but are not available for most organic substances. We took advantage of isotope effects in chemical dehalogenation reactions to generate (i) silver chloride (CT16) depleted in 37Cl/35Cl and (ii) compound-specific standards of the herbicides acetochlor and S-metolachlor (Aceto2, Metola2) enriched in 37Cl/35Cl. Calibration against the international reference standards USGS38 (-87.90 ‰) and ISL-354 (+0.05 ‰) by complementary methods (gas chromatography-isotope ratio mass spectrometry, GC-IRMS, versus gas chromatography-multicollector inductively coupled plasma mass spectrometry, GC-MC-ICPMS) gave a consensus value of δ37ClCT16 = -26.82 ± 0.18 ‰. Preliminary GC-MC-ICPMS characterization of commercial Aceto1 and Metola1 versus Aceto2 and Metola2 resulted in tentative values of δ37ClAceto1 = 0.29 ± 0.29 ‰, δ37ClAceto2 = 18.54 ± 0.20 ‰, δ37ClMetola1 = -4.28 ± 0.17 ‰ and δ37ClMetola2 = 5.12 ± 0.27 ‰. The possibility to generate chlorine isotope in-house standards with pronounced shifts in isotope values offers a much-needed basis for accurate chlorine CSIA.

6.
Sci Total Environ ; 648: 422-429, 2019 Jan 15.
Article in English | MEDLINE | ID: mdl-30121041

ABSTRACT

Chlorinated ethanes are frequent groundwater contaminants but compound specific isotope analysis (CSIA) has been scarcely applied to investigate their degradation pathways. In this study, dual carbon and chlorine isotope fractionation was used to investigate for the first time the anoxic biodegradation of 1,1,2-trichloroethane (1,1,2-TCA) using a Dehalogenimonas-containing culture. The isotopic fractionation values obtained for the biodegradation of 1,1,2-TCA were ɛC = -6.9 ±â€¯0.4‰ and ɛCl = -2.7 ±â€¯0.3‰. The detection of vinyl chloride (VC) as unique byproduct and a closed carbon isotopic mass balance corroborated that dichloroelimination was the degradation pathway used by this strain. Combining the values of δ13C and δ37Cl resulted in a dual element C-Cl isotope slope of Λ = 2.5 ±â€¯0.2‰. Investigation of the apparent kinetic isotope effects (AKIEs) expected for cleavage of a CCl bond showed an important masking of the intrinsic isotope fractionation. Theoretical calculation of Λ suggested that dichloroelimination of 1,1,2-TCA was taking place via simultaneous cleavage of two CCl bonds (concerted reaction mechanism). The isotope data obtained in this study can be useful to monitor natural attenuation of 1,1,2-TCA via dichloroelimination and provide insights into the source and fate of VC in contaminated groundwaters.


Subject(s)
Carbon Isotopes/analysis , Chlorine/analysis , Chloroflexi/metabolism , Isotopes/analysis , Trichloroethanes/metabolism , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/metabolism , Biodegradation, Environmental , Chemical Fractionation
7.
Environ Sci Technol ; 52(15): 8607-8616, 2018 08 07.
Article in English | MEDLINE | ID: mdl-29975517

ABSTRACT

Dichloromethane (DCM) is a probable human carcinogen and frequent groundwater contaminant and contributes to stratospheric ozone layer depletion. DCM is degraded by aerobes harboring glutathione-dependent DCM dehalogenases; however, DCM contamination occurs in oxygen-deprived environments, and much less is known about anaerobic DCM metabolism. Some members of the Peptococcaceae family convert DCM to environmentally benign products including acetate, formate, hydrogen (H2), and inorganic chloride under strictly anoxic conditions. The current study applied stable carbon and chlorine isotope fractionation measurements to the axenic culture Dehalobacterium formicoaceticum and to the consortium RM comprising DCM degrader Candidatus Dichloromethanomonas elyunquensis. Degradation-associated carbon and chlorine isotope enrichment factors (εC and εCl) of -42.4 ± 0.7‰ and -5.3 ± 0.1‰, respectively, were measured in D. formicoaceticum cultures. A similar εCl of -5.2 ± 0.1‰, but a substantially lower εC of -18.3 ± 0.2‰, were determined for Ca. Dichloromethanomonas elyunquensis. The εC and εCl values resulted in distinctly different dual element C-Cl isotope correlations (ΛC/Cl = Δδ13C/Δδ37Cl) of 7.89 ± 0.12 and 3.40 ± 0.03 for D. formicoaceticum and Ca. Dichloromethanomonas elyunquensis, respectively. The distinct ΛC/Cl values obtained for the two cultures imply mechanistically distinct C-Cl bond cleavage reactions, suggesting that members of Peptococcaceae employ different pathways to metabolize DCM. These findings emphasize the utility of dual carbon-chlorine isotope analysis to pinpoint DCM degradation mechanisms and to provide an additional line of evidence that detoxification is occurring at DCM-contaminated sites.


Subject(s)
Methylene Chloride , Peptococcaceae , Anaerobiosis , Biodegradation, Environmental , Carbon , Carbon Isotopes , Chlorine
8.
Sci Total Environ ; 619-620: 784-793, 2018 Apr 01.
Article in English | MEDLINE | ID: mdl-29161603

ABSTRACT

A laboratory approach was adopted in this study to explore the potential of 37Cl-CSIA in combination with 13C-CSIA and Biological Molecular Tools (BMTs) to estimate the occurrence of monochloroenzene (MCB) aerobic biodegradation. A new analytical method for 37Cl-CSIA of MCB was developed in this study. This methodology using a GC-IRMS allowed to determine δ37Cl values within an internal error of ±0.3‰. Samples from a heavily MCB contaminated site were collected and MCB aerobic biodegradation microcosms with indigenous cultures in natural and enhanced conditions were set up. The microcosms data show a negligible fractionation for 13C associated to MCB mass decrease of >95% over the incubation time. Conversely, an enrichment factor of -0.6±0.1‰ was estimated for 37Cl, which is a reflection of a secondary isotope effect. Moreover, the dual isotope approach showed a pattern for aerobic degradation which differ from the theoretical trend for reductive dehalogenation. Quantitative Polymerase Chain Reaction (qPCR) results showed a significant increase in todC gene copy number with respect to its initial levels for both natural attenuation and biostimulated microcosms, suggesting its involvement in the MCB aerobic degradation, whereas phe gene copy number increased only in the biostimulated ones. Indeed, 37Cl fractionation in combination with the dual carbon­chlorine isotope approach and the todC gene copy number represent valuable indicators for a qualitative assessment of MCB aerobic biodegradation in the field.


Subject(s)
Biodegradation, Environmental , Chlorobenzenes/metabolism , Water Pollutants, Chemical/metabolism , Bacteria/genetics , Bacteria/metabolism , Carbon Isotopes , Chlorides , Genes, Bacterial , Geologic Sediments/chemistry , Groundwater/chemistry , Halogenation
9.
Chemosphere ; 186: 160-166, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28772183

ABSTRACT

Typical brominated organic pollutants poly brominated diphenyl ethers (PBDEs) might be characterized by their stable carbon and bromine isotopic compositions. Currently, there are no published reports concerning the two-dimensional isotopic (δ13C and δ81Br) values of PBDEs. To assess the significance of carbon and bromine isotopes in the source identification of PBDEs, EA-IRMS and off-line-IRMS methods were employed to measure the δ13C and δ81Br values of the typical PBDE congeners, 2,2',4,4'-tetrabromodiphenyl ethers (BDE-47) and decabromodiphenyl ether (BDE-209) from different suppliers. The results show that individual PBDE congeners (three BDE-47 samples and three BDE-209 samples) have unique δ13C and δ81Br values, possibly due to differences in the precursors and manufacturing processes, indicating that the isotope composition is a promising probe to determine the source of PBDEs in the environment. While it is worth noting that some challenges might exist during practical application of this method, such as the similar isotopic compositions of PBDEs from different source. Thus, source identification associated with isotopic signatures should be used cautiously. This study provides a basis for further research into the source identification of PBDEs in the environment by examining their isotopic characteristics.


Subject(s)
Environmental Monitoring/methods , Environmental Pollutants/analysis , Halogenated Diphenyl Ethers/analysis , Bromine/chemistry , Carbon/chemistry , Halogenated Diphenyl Ethers/chemistry , Isotopes/chemistry
10.
Environ Sci Technol ; 51(18): 10526-10535, 2017 Sep 19.
Article in English | MEDLINE | ID: mdl-28810730

ABSTRACT

Even though multi-element isotope fractionation patterns provide crucial information with which to identify contaminant degradation pathways in the field, those involving hydrogen are still lacking for many halogenated groundwater contaminants and degradation pathways. This study investigates for the first time hydrogen isotope fractionation during both aerobic and anaerobic biodegradation of 1,2-dichloroethane (1,2-DCA) using five microbial cultures. Transformation-associated isotope fractionation values (εbulkH) were -115 ± 18‰ (aerobic C-H bond oxidation), -34 ± 4‰ and -38 ± 4‰ (aerobic C-Cl bond cleavage via hydrolytic dehalogenation), and -57 ± 3‰ and -77 ± 9‰ (anaerobic C-Cl bond cleavage via reductive dihaloelimination). The dual-element C-H isotope approach (ΛC-H = Δδ2H/Δδ13C ≈ εbulkH/εbulkC, where Δδ2H and Δδ13C are changes in isotope ratios during degradation) resulted in clearly different ΛC-H values: 28 ± 4 (oxidation), 0.7 ± 0.1 and 0.9 ± 0.1 (hydrolytic dehalogenation), and 1.76 ± 0.05 and 3.5 ± 0.1 (dihaloelimination). This result highlights the potential of this approach to identify 1,2-DCA degradation pathways in the field. In addition, distinct trends were also observed in a multi- (i.e., Δδ2H versus Δδ37Cl versus Δδ13C) isotope plot, which opens further possibilities for pathway identification in future field studies. This is crucial information to understand the mechanisms controlling natural attenuation of 1,2-DCA and to design appropriate strategies to enhance biodegradation.


Subject(s)
Biodegradation, Environmental , Ethylene Dichlorides/metabolism , Hydrogen , Carbon Isotopes
11.
Environ Sci Technol ; 51(17): 9663-9673, 2017 Sep 05.
Article in English | MEDLINE | ID: mdl-28727446

ABSTRACT

Chlorinated ethenes (CEs) such as perchloroethylene, trichloroethylene and dichloroethylene are notorious groundwater contaminants. Although reductive dehalogenation is key to their environmental and engineered degradation, underlying reaction mechanisms remain elusive. Outer-sphere reductive single electron transfer (OS-SET) has been proposed for such different processes as Vitamin B12-dependent biodegradation and zerovalent metal-mediated dehalogenation. Compound-specific isotope effect (13C/12C, 37Cl/35Cl) analysis offers a new opportunity to test these hypotheses. Defined OS-SET model reactants (CO2 radical anions, S2--doped graphene oxide in water) caused strong carbon (εC = -7.9‰ to -11.9‰), but negligible chlorine isotope effects (εCl = -0.12‰ to 0.04‰) in CEs. Greater chlorine isotope effects were observed in CHCl3 (εC = -7.7‰, εCl = -2.6‰), and in CEs when the exergonicity of C-Cl bond cleavage was reduced in an organic solvent (reaction with arene radical anions in glyme). Together, this points to dissociative OS-SET (SET to a σ* orbital concerted with C-Cl breakage) in alkanes compared to stepwise OS-SET (SET to a π* orbital followed by C-Cl cleavage) in ethenes. The nonexistent chlorine isotope effects of chlorinated ethenes in all aqueous OS-SET experiments contrast strongly with pronounced Cl isotope fractionation in all natural and engineered reductive dehalogenations reported to date suggesting that OS-SET is an exception rather than the rule in environmental transformations of chlorinated ethenes.


Subject(s)
Biodegradation, Environmental , Ethylenes , Tetrachloroethylene , Trichloroethylene , Carbon Isotopes , Electrons
12.
Sci Total Environ ; 596-597: 169-177, 2017 Oct 15.
Article in English | MEDLINE | ID: mdl-28431360

ABSTRACT

cis-1,2-Dichloroethene (cis-DCE) and trichloroethene (TCE) are persistent, toxic and mobile pollutants in groundwater systems. They are both conducive to reductive dehalogenation and to oxidation by permanganate. In this study, the potential of dual element (C, Cl) compound specific isotope analyses (CSIA) for distinguishing between chemical oxidation and anaerobic reductive dechlorination of cis-DCE and TCE was investigated. Well-controlled cis-DCE degradation batch tests gave similar carbon isotope enrichment factors εC (‰), but starkly contrasting dual element isotope slopes Δδ13C/Δδ37Cl for permanganate oxidation (εC=-26‰±6‰, Δδ13C/Δδ37Cl≈-125±47) compared to reductive dechlorination (εC=-18‰±4‰, Δδ13C/Δδ37Cl≈4.5±3.4). The difference can be tracked down to distinctly different chlorine isotope fractionation: an inverse isotope effect during chemical oxidation (εCl=+0.2‰±0.1‰) compared to a large normal isotope effect in reductive dechlorination (εCl=-3.3‰±0.9‰) (p≪0.05). A similar trend was observed for TCE. The dual isotope approach was evaluated in the field before and up to 443days after a pilot scale permanganate injection in the subsurface. Our study indicates, for the first time, the potential of the dual element isotope approach for distinguishing cis-DCE (and TCE) concentration drops caused by dilution, oxidation by permanganate and reductive dechlorination both at laboratory and field scale.

13.
Rapid Commun Mass Spectrom ; 29(24): 2341-8, 2015 Dec 30.
Article in English | MEDLINE | ID: mdl-26563705

ABSTRACT

RATIONALE: The environmental occurrence of chlorinated acetic acids (CAAs) has been extensively studied, but the sources and transport are still not yet fully understood. A promising approach for source apportionment and process studies is the isotopic characterization of target compounds. We present the first on-line stable chlorine isotope analysis of CAAs by use of gas chromatography/quadrupole mass spectrometry (GC/qMS). METHODS: Following approved procedures for concentration analysis, CAAs extracted into MTBE were methylated to GC-amenable methyl esters (mCAAs). These mCAAs were then analyzed by GC/qMS for their stable chlorine isotope composition using a sample/standard-bracketing approach (CAA standards in the range δ(37) Cl -6.3 to -0.2 ‰, Standard Mean Ocean Chloride). RESULTS: Cross-calibration of the herein presented method with off-line reference methods (thermal ionization and continuous-flow GC isotope ratio mass spectrometry; TI-MS and CF-GC/IRMS, respectively) shows good agreement between the methods (regression slope for GC/qMS vs reference method data sets: 0.92 ± 0.29). Sample amounts as small as 10 pmol Cl can herewith be analyzed with a precision of 0.1 to 0.4 ‰. CONCLUSIONS: This method should be useful for environmental studies of CAAs at ambient concentrations in precipitations (<0.06 to 100 nmol L(-1) ), surface waters (<0.2 to 5 nmol L(-1) ) and soil (<0.6 to 2000 nmol kg(-1) dry soil) where conventional off-line methods cannot be applied.


Subject(s)
Acetates/analysis , Acetates/chemistry , Chlorine/analysis , Gas Chromatography-Mass Spectrometry/methods , Isotopes/analysis , Halogenation
14.
J Hazard Mater ; 299: 747-54, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26248540

ABSTRACT

Compound-specific isotopic analysis of multiple elements (C, Cl, H) was tested to better assess the effect of a zero-valent iron-permeable reactive barrier (ZVI-PRB) installation at a site contaminated with tetrachloroethene (PCE) and trichloroethene (TCE). The focus was on (1) using (13)C to evaluate natural chlorinated ethene biodegradation and the ZVI-PRB efficiency; (2) using dual element (13)C-(37)Cl isotopic analysis to distinguish biotic from abiotic degradation of cis-dichloroethene (cis-DCE); and (3) using (13)C-(37)Cl-(2)H isotopic analysis of cis-DCE and TCE to elucidate different contaminant sources. Both biodegradation and degradation by ZVI-PRB were indicated by the metabolites that were detected and the (13)C data, with a quantitative estimate of the ZVI-PRB efficiency of less than 10% for PCE. Dual element (13)C-(37)Cl isotopic plots confirmed that biodegradation was the main process at the site including the ZVI-PRB area. Based on the carbon isotope data, approximately 45% and 71% of PCE and TCE, respectively, were estimated to be removed by biodegradation. (2)H combined with (13)C and (37)Cl seems to have identified two discrete sources contributing to the contaminant plume, indicating the potential of δ(2)H to discriminate whether a compound is of industrial origin, or whether a compound is formed as a daughter product during degradation.


Subject(s)
Carbon/chemistry , Chlorine/analysis , Environmental Pollutants/analysis , Ethylenes/analysis , Hydrogen/chemistry , Iron/chemistry , Isotopes
15.
Environ Sci Technol ; 48(24): 14400-8, 2014 Dec 16.
Article in English | MEDLINE | ID: mdl-25379605

ABSTRACT

This study investigates dual C-Cl isotope fractionation during 1,1,1-TCA transformation by heat-activated persulfate (PS), hydrolysis/dehydrohalogenation (HY/DH) and Fe(0). Compound-specific chlorine isotope analysis of 1,1,1-TCA was performed for the first time, and transformation-associated isotope fractionation ε bulk C and ε bulk Cl values were -4.0 ± 0.2‰ and no chlorine isotope fractionation with PS, -1.6 ± 0.2‰ and -4.7 ± 0.1‰ for HY/DH, -7.8 ± 0.4‰ and -5.2 ± 0.2‰ with Fe(0). Distinctly different dual isotope slopes (Δδ13C/Δδ37Cl): ∞ with PS, 0.33 ± 0.04 for HY/DH and 1.5 ± 0.1 with Fe(0) highlight the potential of this approach to identify abiotic degradation pathways of 1,1,1-TCA in the field. The trend observed with PS agreed with a C-H bond oxidation mechanism in the first reaction step. For HY/DH and Fe(0) pathways, different slopes were obtained although both pathways involve cleavage of a C-Cl bond in their initial reaction step. In contrast to the expected larger primary carbon isotope effects relative to chlorine for C-Cl bond cleavage, ε bulk C < ε bulk Cl was observed for HY/DH and in a similar range for reduction by Fe(0), suggesting the contribution of secondary chlorine isotope effects. Therefore, different magnitude of secondary chlorine isotope effects could at least be partly responsible for the distinct slopes between HY/DH and Fe(0) pathways. Following this dual isotope approach, abiotic transformation processes can unambiguously be identified and quantified.


Subject(s)
Carbon Isotopes/analysis , Chlorine/analysis , Trichloroethanes/chemistry , Carbon Isotopes/chemistry , Chemical Fractionation , Chlorine/chemistry , Iron/chemistry , Isotopes/analysis , Isotopes/chemistry , Oxidation-Reduction , Sulfates/chemistry
16.
Environ Sci Technol ; 48(20): 11837-45, 2014 Oct 21.
Article in English | MEDLINE | ID: mdl-25216120

ABSTRACT

The role of the corrinoid cofactor in reductive dehalogenation catalysis by tetrachloroethene reductive dehalogenase (PceA) of Sulfurospirillum multivorans was investigated using isotope analysis of carbon and chlorine. Crude extracts containing PceA--harboring either a native norpseudo-B12 or the alternative nor-B12 cofactor--were applied for dehalogenation of tetrachloroethene (PCE) or trichloroethene (TCE), and compared to abiotic dehalogenation with the respective purified corrinoids (norpseudovitamin B12 and norvitamin B12), as well as several commercially available cobalamins and cobinamide. Dehalogenation of TCE resulted in a similar extent of C and Cl isotope fractionation, and in similar dual-element isotope slopes (εC/εCl) of 5.0-5.3 for PceA enzyme and 3.7-4.5 for the corrinoids. Both observations support an identical reaction mechanism. For PCE, in contrast, observed C and Cl isotope fractionation was smaller in enzymatic dehalogenation, and dual-element isotope slopes (2.2-2.8) were distinctly different compared to dehalogenation mediated by corrinoids (4.6-7.0). Remarkably, εC/εCl of PCE depended in addition on the corrinoid type: εC/εCl values of 4.6 and 5.0 for vitamin B12 and norvitamin B12 were significantly different compared to values of 6.9 and 7.0 for norpseudovitamin B12 and dicyanocobinamide. Our results therefore suggest mechanistic and/or kinetic differences in catalytic PCE dehalogenation by enzymes and different corrinoids, whereas such differences were not observed for TCE.


Subject(s)
Chlorine/analysis , Corrinoids/metabolism , Epsilonproteobacteria/enzymology , Halogenation , Hydrolases/metabolism , Tetrachloroethylene/metabolism , Trichloroethylene/metabolism , Carbon Isotopes , Chemical Fractionation , Corrinoids/chemistry , Isotope Labeling
17.
Environ Sci Technol ; 48(16): 9430-7, 2014 Aug 19.
Article in English | MEDLINE | ID: mdl-25010210

ABSTRACT

This study investigates dual element isotope fractionation during aerobic biodegradation of 1,2-dichloroethane (1,2-DCA) via oxidative cleavage of a C-H bond (Pseudomonas sp. strain DCA1) versus C-Cl bond cleavage by S(N)2 reaction (Xanthobacter autotrophicus GJ10 and Ancylobacter aquaticus AD20). Compound-specific chlorine isotope analysis of 1,2-DCA was performed for the first time, and isotope fractionation (ε(bulk)(Cl)) was determined by measurements of the same samples in three different laboratories using two gas chromatography-isotope ratio mass spectrometry systems and one gas chromatography-quadrupole mass spectrometry system. Strongly pathway-dependent slopes (Δδ13C/Δδ37Cl), 0.78 ± 0.03 (oxidation) and 7.7 ± 0.2 (S(N)2), delineate the potential of the dual isotope approach to identify 1,2-DCA degradation pathways in the field. In contrast to different ε(bulk)(C) values [-3.5 ± 0.1‰ (oxidation) and -31.9 ± 0.7 and -32.0 ± 0.9‰ (S(N)2)], the obtained ε(bulk)(Cl) values were surprisingly similar for the two pathways: -3.8 ± 0.2‰ (oxidation) and -4.2 ± 0.1 and -4.4 ± 0.2‰ (S(N)2). Apparent kinetic isotope effects (AKIEs) of 1.0070 ± 0.0002 (13C-AKIE, oxidation), 1.068 ± 0.001 (13C-AKIE, S(N)2), and 1.0087 ± 0.0002 (37Cl-AKIE, S(N)2) fell within expected ranges. In contrast, an unexpectedly large secondary 37Cl-AKIE of 1.0038 ± 0.0002 reveals a hitherto unrecognized involvement of C-Cl bonds in microbial C-H bond oxidation. Our two-dimensional isotope fractionation patterns allow for the first time reliable 1,2-DCA degradation pathway identification in the field, which unlocks the full potential of isotope applications for this important groundwater contaminant.


Subject(s)
Carbon Isotopes/analysis , Ethylene Dichlorides/analysis , Groundwater/chemistry , Water Pollutants, Chemical/analysis , Xanthobacter/growth & development , Aerobiosis , Biodegradation, Environmental , Chemical Fractionation , Chlorine/analysis , Isotopes/analysis , Kinetics , Oxidation-Reduction
18.
Molecules ; 19(5): 6450-73, 2014 May 20.
Article in English | MEDLINE | ID: mdl-24853618

ABSTRACT

Chlorinated ethenes are prevalent groundwater contaminants. To better constrain (bio)chemical reaction mechanisms of reductive dechlorination, the position-specificity of reductive trichloroethene (TCE) dehalogenation was investigated. Selective biotransformation reactions (i) of tetrachloroethene (PCE) to TCE in cultures of Desulfitobacterium sp. strain Viet1; and (ii) of TCE to cis-1,2-dichloroethene (cis-DCE) in cultures of Geobacter lovleyi strain SZ were investigated. Compound-average carbon isotope effects were -19.0‰ ± 0.9‰ (PCE) and -12.2‰ ± 1.0‰ (TCE) (95% confidence intervals). Using instrumental advances in chlorine isotope analysis by continuous flow isotope ratio mass spectrometry, compound-average chorine isotope effects were measured for PCE (-5.0‰ ± 0.1‰) and TCE (-3.6‰ ± 0.2‰). In addition, position-specific kinetic chlorine isotope effects were determined from fits of reactant and product isotope ratios. In PCE biodegradation, primary chlorine isotope effects were substantially larger (by -16.3‰ ± 1.4‰ (standard error)) than secondary. In TCE biodegradation, in contrast, the product cis-DCE reflected an average isotope effect of -2.4‰ ± 0.3‰ and the product chloride an isotope effect of -6.5‰ ± 2.5‰, in the original positions of TCE from which the products were formed (95% confidence intervals). A greater difference would be expected for a position-specific reaction (chloride would exclusively reflect a primary isotope effect). These results therefore suggest that both vicinal chlorine substituents of TCE were reactive (intramolecular competition). This finding puts new constraints on mechanistic scenarios and favours either nucleophilic addition by Co(I) or single electron transfer as reductive dehalogenation mechanisms.


Subject(s)
Chlorine/chemistry , Desulfitobacterium/metabolism , Geobacter/metabolism , Trichloroethylene/chemistry , Biodegradation, Environmental , Carbon Isotopes/chemistry , Dichloroethylenes/chemistry , Dichloroethylenes/metabolism , Kinetics , Mass Spectrometry , Models, Chemical , Models, Theoretical , Tetrachloroethylene/chemistry , Tetrachloroethylene/metabolism , Trichloroethylene/metabolism , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/metabolism
19.
Ground Water ; 52(6): 875-85, 2014.
Article in English | MEDLINE | ID: mdl-24164437

ABSTRACT

Chlorinated solvents are one of the most commonly detected groundwater contaminants in industrial areas. Identification of polluters and allocation of contaminant sources are important concerns in the evaluation of complex subsurface contamination with multiple sources. In recent years, compound-specific isotope analyses (CSIA) have been employed to discriminate among different contaminant sources and to better understand the fate of contaminants in field-site studies. In this study, the usefulness of dual isotopes (carbon and chlorine) was shown in assessments of groundwater contamination at an industrial complex in Wonju, Korea, where groundwater contamination with chlorinated solvents such as trichloroethene (TCE) and carbon tetrachloride (CT) was observed. In November 2009, the detected TCE concentrations at the study site ranged between nondetected and 10,066 µg/L, and the CT concentrations ranged between nondetected and 985 µg/L. In the upgradient area, TCE and CT metabolites were detected, whereas only TCE metabolites were detected in the downgradient area. The study revealed the presence of separate small but concentrated TCE pockets in the downgradient area, suggesting the possibility of multiple contaminant sources that created multiple comingling plumes. Furthermore, the variation of the isotopic (δ(13) C and δ(37) Cl) TCE values between the upgradient and downgradient areas lends support to the idea of multiple contamination sources even in the presence of detectable biodegradation. This case study found it useful to apply a spatial distribution of contaminants coupled with their dual isotopic values for evaluation of the contaminated sites and identification of the presence of multiple sources in the study area.


Subject(s)
Carbon/chemistry , Chlorine/chemistry , Groundwater/chemistry , Environmental Monitoring , Isotopes , Oxidation-Reduction , Radioactive Tracers , Seoul , Time Factors , Water Movements , Water Pollutants, Chemical/chemistry
20.
Environ Sci Technol ; 47(13): 6855-63, 2013 Jul 02.
Article in English | MEDLINE | ID: mdl-23627862

ABSTRACT

Chloroethenes like trichloroethene (TCE) are prevalent environmental contaminants, which may be degraded through reductive dechlorination. Chemical models such as cobalamine (vitamin B12) and its simplified analogue cobaloxime have served to mimic microbial reductive dechlorination. To test whether in vitro and in vivo mechanisms agree, we combined carbon and chlorine isotope measurements of TCE. Degradation-associated enrichment factors ε(carbon) and ε(chlorine) (i.e., molecular-average isotope effects) were -12.2‰ ± 0.5‰ and -3.6‰ ± 0.1‰ with Geobacter lovleyi strain SZ; -9.1‰ ± 0.6‰ and -2.7‰ ± 0.6‰ with Desulfitobacterium hafniense Y51; -16.1‰ ± 0.9‰ and -4.0‰ ± 0.2‰ with the enzymatic cofactor cobalamin; -21.3‰ ± 0.5‰ and -3.5‰ ± 0.1‰ with cobaloxime. Dual element isotope slopes m = Δδ(13)C/ Δδ(37)Cl ≈ ε(carbon)/ε(chlorine) of TCE showed strong agreement between biotransformations (3.4 to 3.8) and cobalamin (3.9), but differed markedly for cobaloxime (6.1). These results (i) suggest a similar biodegradation mechanism despite different microbial strains, (ii) indicate that transformation with isolated cobalamin resembles in vivo transformation and (iii) suggest a different mechanism with cobaloxime. This model reactant should therefore be used with caution. Our results demonstrate the power of two-dimensional isotope analyses to characterize and distinguish between reaction mechanisms in whole cell experiments and in vitro model systems.


Subject(s)
Trichloroethylene/chemistry , Trichloroethylene/metabolism , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/metabolism , Biodegradation, Environmental , Carbon Isotopes/chemistry , Chlorine/chemistry , Chlorine/metabolism , Desulfitobacterium/metabolism , Geobacter/metabolism , Isotopes/chemistry , Organometallic Compounds/chemistry , Oxidation-Reduction , Vitamin B 12/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...